The Ricci Bracket Flow for Solvable Lie Groups
نویسنده
چکیده
The Ricci bracket flow is a geometric evolution on Lie algebras which is related to the Ricci flow on the corresponding Lie group. For nilpotent Lie groups, these two flows are equivalent. In the solvable case, it is not known whether they are equivalent. We examine a family of solvable Lie algebras and identify various elements of that family which are solitons under the Ricci bracket flow. We also examine behavior of several classes of non-soliton brackets under the flow.
منابع مشابه
Linear Stability of Homogeneous Ricci Solitons
As a step toward understanding the analytic behavior of Type-III Ricci flow singularities, i.e. immortal solutions that exhibit |Rm | ≤ C/t curvature decay, we examine the linearization of an equivalent flow at fixed points discovered recently by Baird–Danielo and Lott: nongradient homogeneous expanding Ricci solitons on nilpotent or solvable Lie groups. For all explicitly known nonproduct exam...
متن کاملEinstein structures on four-dimensional nutral Lie groups
When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...
متن کاملModuli of Einstein and Non-Einstein Nilradicals
The subject of left-invariant Ricci soliton metrics on nilpotent Lie groups has enjoyed quite a bit of attention in the past several years. These metrics are intimately related to left-invariant Einstein metrics on non-unimodular solvable Lie groups. In fact, a classification of one is equivalent to a classification of the other. In this note, we focus our attention on nilpotent Lie groups and ...
متن کاملSolvable Lie algebras with $N(R_n,m,r)$ nilradical
In this paper, we classify the indecomposable non-nilpotent solvable Lie algebras with $N(R_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $N(R_n,m,r)$.We also prove that these solvable Lie algebras are complete and unique, up to isomorphism.
متن کاملSymmetric curvature tensor
Recently, we have used the symmetric bracket of vector fields, and developed the notion of the symmetric derivation. Using this machinery, we have defined the concept of symmetric curvature. This concept is natural and is related to the notions divergence and Laplacian of vector fields. This concept is also related to the derivations on the algebra of symmetric forms which has been discu...
متن کامل